
Converting a Regular Expression to DFA
Jay Bagga

1 Regular Expression to DFA

In this exercise we use JFLAP to construct a DFA that is equivalent to a given regular
expression. We will use the regular expression (ab + a)∗ for our exercise. Can you describe
in words the language represented by this regular expression?

Choose Regular Expression in JFLAP and enter the regular expression (ab+a)∗. See Figure 1.

Figure 1: Input regular expression

Figure 2: GTG from regular expression

Then select Convert: Convert to NFA. JFLAP creates a generalized transition graph as
shown in Figure 2, with two states and a single transition labeled (ab + a)∗. We next need
to break this transition into its simpler components.

Click the “De-expressionify’” transition button and then click on the transition label. This
creates two new states and a transition labeled (ab + a). See Figure 3. Since we are “de-
starring” the regular expression, we need four λ-transitions to achieve the equivalent GTG.
Where do these λ-transitions go?

1



A GTG needing λ-transitions A GTG with λ-transitions

Figure 3: GTGs

Click the “Do Step” button to see the answer, as in Figure 3.

A GTG needing λ-transitions A GTG with λ-transitions

Figure 4: GTGs

Figure 5: NFA

Next, repeat the De-expressionify transition process for the transition labeled ab+a to get
the results shown in Figures 4. Repeat the same process for each of the remaining expressions
on transitions. Think though the answers for placing λ-transitions before letting JFLAP do
it for you. The NFA that results is shown in Figure 5.

We finally convert this NFA to a DFA. Review the appropriate lesson, the algorithm and
exercises on how this is done. Here we review one intermediate step. Click on Convert to

2



NFA to DFA conversion - first step Final DFA

Figure 6: NFA to DFA

DFA. As a first step, you get the result as in Figure 6. JFLAP creates a new state q0 by
grouping the equivalent states q0, q1, q2, q4, q6 and q8 of the NFA. You should proceed by
following the algorithm for converting an NFA to a DFA. The final result is shown in Figure
6. What language does this DFA accept? Is it the same as that for the regular expression
(ab+ a)∗?

2 References

1. Introduction to the Theory of Computation (Third Edition), Michael Sipser. Cengage
Learning. 2013.

2. JFLAP - An Interactive Formal Languages and Automata Package, Susan H. Rodger
and Thomas W Finley. Jones and Bartlett Publishers. 2006

3


